Organizations in a wide array of fields and disciplines are increasingly using design thinking as an innovative process to create products or services that address wicked problems in their industries. Design thinking, a method of creative and collaborative problem solving originating in the tactics of designers, is a product design and development process that is, more and more, being used as a tool to move innovation forward and structure creation processes in diverse disciplines, from product development to food creation to social science research. Increasingly design thinking has become popular beyond the confines of creative and design disciplines and into the realm of wicked problems in social and ecological systems. While design thinking has many forms and applications, this study uses a refined version built upon the key themes of inspiration, ideation, and implementation as defined by Tim Brown, CEO of IDEO (2009), and situates it within the social science discipline—namely, systems thinking, organizational learning, and action research. Through a distilled design structure this flexible methodology combines insights from organizational development, social psychology, systems theory, and design research. By embedding learning and reflective practices into the structure of design thinking, a hybrid model of design thinking emerges that is a more effective tool for framing, setting in context, and solving these types of problems within teams.
From large private companies to small NGOs, academic institutions, and government entities, all are striving to learn about and create innovative services, products, and experiences that address the problems the relevant stakeholders in their industries face. Design thinking, a methodology for problem solving that has its origins in designers’ approaches, tactics, and needs to make this multi-disciplinary process explicit (Gregory, 1966), has increasingly emerged in recent decades as a powerful method to drive the innovation process in the pursuit of improvement. Design thinking, as described by the emerging management and innovation scholar Michael Luchs, is “…a creative problem-solving approach—or, more completely, a systematic and collaborative approach for identifying and creatively solving problems” (2015, p. 1). Design thinking’s holistic approach to stakeholders and systems, coupled with its participatory nature, has made it an approachable technique to use beyond the fields of art, architecture, engineering, and technology that traditionally have design disciplines. The theories and practice of design thinking have grown in popularity and have been more heavily used in the academic discourses on management and in the business industry over the past several decades. Thus, this discipline has emerged as a problem solving tool beyond the traditional confines of design (Johansson-Sköldberg et al., 2013).
This leads to the following research question: to what extent does the application of design thinking, tasked with addressing wicked problems, represent an effective means for team problem setting and problem solving in organizations?
To fully grasp the concepts discussed in this proposal, it is helpful to clarify a few definitions before proceeding. Wicked problems: these are difficult and challenging problems, which appear in all fields and organizations; the most complex, multifaceted, and intractable problems with systemic impact are referred to as wicked problems (Churchman, 1967; Rittel & Webber, 1973; Roberts, 2000). Organizations: This term is defined as “social units (or human groupings) deliberately constructed and reconstructed to seek specific goals” (Etzioni, 1964, p. 3) and, in this study, they are defined as seeking to solve problems through the creation of a new product or service. Design thinking: The definition of design thinking in this study can be simply understood as the use of methods and research practices to solve problems that are traditionally not in the fields of design, architecture, or engineering.
Design thinking was evangelized and popularized by IDEO beginning in the early 1990s (Brown, 2009); however, it existed in the academic discourse much earlier in various forms. To understand the current and evolving use of design thinking, a historical review of this process is beneficial. Specifically, it is essential to examine the early work examining designers’ practice and research, occurring in the latter half of the twentieth century, by the parents of modern design thought: Lawson (1980), Rowe (1987), Archer (1979), and Cross (1991).
An initial push to make a more rigorous discipline out of design thinking sprang from what Michael Barry and Sarah Beckman—current researchers exploring learning in design thinking—refer to as “…a need to make design thinking explicit and a need to embrace the many disciplines that are engaged in some way with design” (Beckman & Barry, 2007, p. 26). The movement towards an explicit design method began in the 1960s, which would later be referred to as the first generation, and the subsequent movement in the 1970s and 1980s, known as the second generation (Rittell, 1984). This second generation of design thought began to emphasize the social aspects of design, by including active participants in the process (Beckman & Barry, 2007).
As described by Archer, “there exists a designerly way of thinking and communication that is both different from scientific and scholarly methods of enquiry when applied to its own kinds of problems” (Archer, 1979, p. 18). This assertion from Archer accents not only the thinking aspect but the unique way of communicating used by designers applying the design thinking method towards problem solving. Similar to this, Cross explains that the design thought process is a research practice and a way of processing information, described as “designerly ways of knowing” (2001), that is an independent methodology with rich theory and should not be dependent on social science theory (2007). These two scholars lay the groundwork for design thinking to emerge as a distinct discipline for tackling problems in a myriad of disciplines.
In addition, Rowe outlined a systematic design process to problem solving that emphasized the role of the designer to address the needs of the client (1987). He described this user-centered process as design thinking, which was one of the earliest uses of the term. In Rowe’s design thinking process, a designer intervenes in a client organization; interprets the evidence gathered through quantitative and qualitative investigation; and makes an effort to address the challenges presented in the form of a product or service. In Lawson’s work, the process of design thinking, though not explicitly called that, is explored as a process that utilizes experimentation and information gathering tactics to tailor products (1980). Lawson’s definition predates Rowe’s use of the term of design thinking but similarly focuses on the designer’s expert role in assessing the needs of a client and testing possible solutions. This process is a tool that designers can masterfully use, informed by their expertise and designerly ways of knowing (Cross, 2001), to ultimately solve challenges that often fall into the definition of wicked problems. Rowe and Lawson focus on the intrinsically unique features of design thinking, with an emphasis on how the use of data gathering and testing make it an ideal tool for finding appropriate and optimal solutions.
These foundations of design thinking led us to Tim Brown’s definition of three overlapping, sometimes non-sequential elements—inspiration, ideation, and implementation—as outlined in Change by Design (2009) and popularized by IDEO. This simple structure serves as the foundation in which to organize the foundational theories for the proposed method in this article. This definition of design thinking is informed by the work of Lawson (1980), Rowe (1987), Archer (1979), and Cross (1991, 2001). This foundational design method is broadly defined as the three key elements can be repeated, can overlap, and can be non-sequential (Brown & Wyatt, 2010).
For this exploration of design thinking’s effect and innovative potential in addressing wicked problems, it is essential to understand the corresponding academic discourse and how it has evolved with design thinking. The theory was first described in an editorial by management theorist Churchman (1967) as a reaction to the term, first coined by Horst Rittel. The article was an exploration of these difficult, virtually unsolvable problems in the management science discourse and responsibility of society and academia to accept their intractability and find innovation solutions to live with them (Churchman, 1967). This first formal definition of the concept was further expanded with more defined parameters with the article of Rittel and Melvin Webber in 1973 as uniquely complex problems. Rittel and Webber’s (1973) work framed wicked problems within the context of social policy planning, where problems are often not clear, and contrasted that with problems in mathematics and chess, where there are clear cut solutions. As stated by modern theorists Brian Head and Wei-Ning Xiang, “…the ubiquity of wicked problems is the norm, and present in almost every pressing issue area that matters to human society today…” (2016, p. 1). This description describes the growing relevance and prevalence of wicked problems on human systems and how it has grown in importance from its inception.
Herbert Simon, a pioneer in design research and artificial intelligence, wanted to use a design approach, in the vein of the one described above, as a unique discipline, to tackle “ill-structured problems,” which he described as problems with undefined characteristics (1969). Simon described his approach to design as a means of “…devising artifacts to attain goals…” (Simon, 1969, p. 114), which continued a trend of describing design as a solution making and transformative process. This interpretation of design thinking continued to gain momentum amongst theorists and practitioners throughout the twentieth century, which resulted in design thinking as a methodology becoming synonymous with problem solving, especially as a multidisciplinary practice for framing wicked problems (Buchanan, 1992). Design thinking as a method to solve problems outside the creative domain began with Herbert Simon, who applied design methodologies to science and his field of artificial intelligence (1969). This movement of applying the design thinking discipline to fields not traditionally associated with design continued with the product development process used by IDEO, know as Human Centered Design or HCD (Brown, 2008; IDEO, 2011). The degree of client participation and at which stages of the process vary between methods, but they agree on a key area of design thinking—that the client or product user is the primary focus.
As design thinking moves beyond the traditional creative sphere and enters the realm of addressing wicked problems across a wide spectrum of topics, the discipline is enriched by the rigorous research practices that the social sciences have to offer. The stand-alone discipline of design thinking explored in this article integrates some of the social science methodologies to effectively adapt to the new terrain of designing for social systems. Specifically, this discipline is informed by systems theory (Bertalanffy, 1969; Dentoni et al., 2023; Meadows, 2008; Senge, 1996), organizational learning (Argyris & Schön, 1978; Kolb, 1984; Senge, 1990) and action research (Lewin, 1946).
Systems are an essential element to implementing a design thinking process that addresses wicked problems, because they allow the designer to see a more expansive view of the problem. To understand how to design a specific product or service, the designer often analyzes the various systems that are involved, such as social, technological, ecological, or political systems. By understanding the inner workings of these systems and collaborating with relevant stakeholders, a designer can co-create a product or service that acts as a targeted intervention to improve the system. This perspective has its origins in general systems theory, formulated by biologist Ludwig Von Bertalanffy (1969), which expands the understanding of systems beyond science and analyzes all systems in an intricate, open, and holistic manner. The majority of design thinking approaches are human-centric perspectives on general systems theory in that they focus not only on the systems involved with a specific intervention but also on how the different systems interact with each other. Though most design thinking processes are human-centered, they are not exclusively focused on social systems, because the ecological and built environment are also considered. Expanding on this viewpoint is organisimic theory (Goldstein, 1995), which emphasizes human interconnectedness—that humans are intrinsically and inextricably intertwined with the natural environment and the ecological systems therein. In addition, Barry Commoner, in his work The Closing Circle, further stated that everything in living systems is connected to each other and what has an effect on one affects all (Commoner, 1971). These ideas inform systems thinking (Dentoni et al., 2023; Senge, 1996), which is an application of systems theory to interpret the intertwined and dynamic interactions among multiple interdependent elements to inform possible interventions. This approach to interconnected systems informs the design thinking approach through the very foundation of the process—placing the human at the center of the research and looking at all the ways this individual connects with the product, service, or system.
The principles of design thinking are human-centered, that is, the results are specifically tailored to the end-user, and are created using a process of collaboration, active engagement, and reflection (IDEO, 2011). This process can be further explained using the double loop learning theory (Argyris & Schön, 1978), which informs how reflective practice foundationally builds on learning. Double loop learning involves single loop learning—repeated attempts to address the same issue with the same method—while additionally engaging in reflective practice to learn from past performance and emphasize repeat attempts to refine approaches (Argyris & Schön, 1978).
David Kolb, a scholar in learning science, similarly, outlines an experiential learning model (1984) rooted in social psychology, which focuses on concrete action, learning from experience, reflection, and experimentation. This theory involves an axis of learning with the y-axis containing two opposing methods of processing experience and an x-axis of opposing methods of transforming experience. This axis of learning can be seen in Fig. 1, and display experience processing in learning from a spectrum of concrete examples as one extreme and abstract conceptualization of ideas as the opposition. The processing of information is similarly balanced that with two opposing methods of transforming experience (Beckman & Barry, 2007; Kolb, 1984). The two diametrically opposed information transformation processes include reflective observation on one end and active experimentation on the other (Beckman & Barry, 2007). In simple terms, the process as seen in Fig. 1 shows two forces of learning that of processing reality and transforming it within each there is a tangible and intangible component. The work of Kolb, Argrys, and Schön increase the potential to learn from the design thinking process with rapid prototyping practice—reacting and changing the product, system, or service based on reflective practices and adapting based on those reflections. Rapid prototyping is influenced by social learning models, which emphasize interaction in learning and the importance of experimentation with both thought and action.
Charles Owen, a design academic from the Illinois Institute of Technology who has advocated for design as an engine for innovation (2006a), builds on the prototyping practice from Kolb, Argrys, and Schön. Owen theorized that the design process has discernable phases that, while often not in order, generally begin with the analytic research stage and end with the synthetic experimentation and creation stage (Owen, 1993). This innovation model begins with creating ideas and concepts from research and then applying them to experiments for testing. When used through the lens of learning, this proposed process, as illustrated in Fig. 2, begins to take shape as a non-sequential, innovative method to interpret and address complex problems. This process is illustrated in the work of Beckman and Barry (2007) who combined the elements of Owen (2006b) in a simple vestige of two axes and four quadrants. In this prescribed and infinitely repeatable process, concrete analysis brings about observable research that can then be applied to abstract analysis, that is, frameworks and theories. Finally, this leads to abstract synthesis, which is the creation of ideas that can be clearly synthesized to become concrete solutions.
Design thinking, as described by Owen, seeks to form knowledge through action (1997), which is similar in style and approach to Action Research (Lewin, 1946) in the social sciences. Action research was first created for researchers to take a participatory and active role in their studies to mold and guide their experience (Lewin, 1946), which echoes the role of the designer in a design thinking process. The designer or researcher needs to take account of their subjects and make observations, which is a traditional research paradigm while also understanding their impact as a participant in the process. In addition, reflective practice (Argyris & Schön, 1978) is a means to review and learn from past experience, and with this tool, a designer or researcher is able to build on observations of the research subject or client and create the best solutions for them. A similar approach to the use of knowledge aggregated from observations and reflective practice, is the needfinding model, which is an exploration of addressing the needs of a particular subject and working to create a solution tailored to solve this problem for them (Faste, 1987). Needfinding in design thinking does not occur as a sequential step after reflection and observation, but rather as a method to guide both of those processes to address the needs of the intended client or product user. Similarly, in action research, needfinding is necessary for the researcher to undertake to gain context of motivations of organizations and individuals involved. In action research, the subject and researchers are all participants and collaborators in the change process and its essential to understand their needs in this context, which parallels the collaborative and solution creating work of a designer.
Schön described design, in its traditional form, as a tacit process with designers’ knowledge that is difficult to transfer or explain (1983). This situates designers as having specific expertise that is difficult for those without the professional know-how to comprehend or utilize. Design thinking seeks to clarify the discipline of design into a process more akin to implicit knowledge (Nonaka & Takechi, 1995), allowing design expertise to be disseminated to a larger audience, including both the designer and the client or product user. This implies that the interaction between the designer and the client is a reciprocal transaction or a communication between interacting components and systems (Germain, 1991; Luhmann, 1995). This interactive method represents the action research process, where both parties contribute to the creation process, with the designer leading the exercise. The change desired in the design thinking process, rather than research study, is an output in the form of a product or service made in collaboration with the client.
This approach to learning is common within design in that it is meant to create the ideal solution through experimentation, iteration, and continually learning from both. Using participatory action research, that is focusing on rapid learning, repetition of the practice-driven design thinking framework, and reflection, is essential for innovating and solving wicked problems (Argyris & Schön, 1991; Lewin, 1946).
Innovation, described as the “core renewal process” in an organization purposed with creating new products and services (Bessant et al., 2005), is the mechanism for addressing wicked problems. To innovate effectively to remain competitive, organizations have increasingly turned to the application of design thinking as a process for product development in recent decades (Johansson-Sköldberg et al., 2013; Lockwood, 2010). Design thinking-driven problem solving is a powerful and disruptive method that creates innovative products and services that seek to address these types of problems across diverse fields.
This article uses a foundational approach to design thinking-driven problem solving, which is, in essence, a flexible framework that does not adhere to a strict structure. Rather, it is able to ebb and flow within the design challenge and cater to the relevant stakeholders. As stated by Sydney Gregory in the seminal work The Design Method, “[the] design method is a pattern of behavior employed in inventing things…which do not yet exist. Science is analytic; design is constructive” (1966, p. 6). Design, in this context, is used as an engine of product, system, and service creation that addresses individuals’ needs and challenges.
The design thinking process explained above can be considered an innovation process (Brown & Wyatt, 2010) and has a social learning component (Beckman & Barry, 2007). More specifically, this process can be defined as a problem setting method (Schön, 1983). Problem setting, as explained by design cognition scholar Willemien Visser is “…the process by which we define the decision to be made, the ends to be achieved, and the means that may be chose[n]” (2010, p. 4). Problem setting is the first step towards innovation and tackling a wicked problem. By defining the problem and understanding all of the pieces that interact with it, one can begin to address, but not necessarily solve a wicked problem. To understand how to use design thinking as a method within this innovative problem setting process, one must understand the context of the current design thinking discourse.
Organizations are consistently looking for innovative ways to advance their products, profits, and goals, and design thinking, though not clearly defined, has emerged as a driving force to meet these challenges. Despite the varying definitions (Brown, 2008; Dorst, 2006, 2010; Kimbell, 2015), there are enough similarities that describe the key elements of design thinking that bring it in line with other design and social science research methodologies. By combining a few of the fundamental elements into a hybrid model of design thinking, it can be used as a powerful tool to address wicked problems that organizations face. This method, as illustrated in Fig. 3, brings together the elements of Charles Owen’s map of innovation (1998, 2006a, 2006b), Kolb’s experiential learning (1984), and Tim Brown’s three signature elements of the design thinking process (2009).
The components of inspiration, ideation, and implementation (Brown, 2009) serve as the foundation of this hybrid model. Using Brown’s simplified construction could be interpreted as embracing the recent, popular versions of design thinking as a third or independent discipline. However, its approachable three-pronged structure provides a categorical separation between steps and meshes well with Owen’s concepts of innovation—the interplay of analysis and synthesis with abstract and concrete (1998, 2006a, 2006b). This powerful combination creates a streamlined and flexible framework, where innovation can occur in a non-sequential order, dictated by the needs of the problem. Interestingly, Archer foresaw this hybrid approach when he stated, “time is rapidly approaching when design decision making and management decision making techniques will have so much in common that the one will become no more than the extension of the other” (1967, p. 51). Archer’s foresight in the above hybrid design approach is in line with his third-way (1979) thought process but differs in that this design discipline works in concert with social science instead of wholly separate from it. Using this innovative hybrid design thinking model, wicked problems can be quickly identified and addressed, with an outlook towards finding specific solutions to fit users’ needs.
Building on the theoretical model, based on the literature review above, a case study was undertaken to better understand the model in practice. The case study used a participatory design thinking exercise with a cohort of students enrolled in an applied entrepreneurial Masters-level course at Wageningen University. This course was targeted at students interested in entrepreneurship and circular economy, and worked with eight student teams that were developing business ideas using renewable materials in garment production. Disruptive innovation—a product, service, or approach that fundamentally upends the status quo of an industry or field (Christensen, 1997)—serves as a lens in this case study to analyze the effect of design thinking on problem solving and concept development of the student teams’ entrepreneurial ventures The course was focused on circular economic systems, which seeks to reuse resources in a closed, infinitely repeatable loop, which is in contrast to traditional linear economic models that use finite resources and create waste (Geissdoerfer et al., 2017). The Ellen MacArthur Foundation, a leader in applying the circular transition, define the concept as the following:
A circular economy is an industrial system that is restorative or regenerative by intention and design. It replaces the “end-of-life” concept with restoration, shifts towards the use of renewable energy, eliminates the use of toxic chemicals, which impair reuse, and aims for the elimination of waste through the superior design of materials, products, systems, and, within this, business models. (Ellen MacArthur Foundation, 2012, p. 7)
Circular economy seeks to reduce humanity’s impact on the environment and climate by decreasing waste and using resources more efficiently, thus attempting to solve the wicked problem of negative human impact on the environment.
Participants in the study came from two types of academic backgrounds: a science-based one, and one rooted in the social sciences. There was an observable difference between each group in their ability to learn and apply design thinking. Students from a science-based background, such as environmental science or biochemistry, were able to learn and use design thinking concepts with greater ease than those with a social science, humanities, or management studies background. This noticeable difference may be attributable to the science-based students’ ability to mix and match frameworks as needed to find solutions to complex problems. For example, in physics, students have been taught to use one formula for one situation with its own set of variables, and another formula for another situation with a second set of variables. In other words, the situation dictates what tools are used. Similarly, in the hybrid model of design thinking, which the students were exposed to, specific elements are only applied in certain circumstances and situations. Thus, as design thinking contains elements of the scientific method, this may have resonated more with the science-based students’ usual ways of learning and applying methods.
The overall purpose of creating a baseline was to see what portion of the design thinking concepts had permeated in participants’ minds and how they described those concepts. As such, I used what participants shared as their interpretation or impression of design thinking in their own words. In many cases their descriptions were of a concept without the use of the concept name (e.g., prototype, ideation), and I compared these explanations with the concepts used in the hybrid model of design thinking in an effort to make connections where possible. The students displayed their knowledge of design thinking during the interviews and through the course by describing important elements of the process, namely, creating prototypes, building on failed attempts, and repeated reflection on the implementation of their ideas. To establish a baseline, it was not necessary for participants to use the exact names or descriptions of the design thinking concepts, as the real test of whether they understood these concepts and could apply them would be uncovered during the design thinking in action (DTiA) section of data collection.
This qualitative methods study, informed by design thinking, was conducted in three phases: Phase 1 consisted of an ethnographic observational study and Phase 2 consisted of a series of six interviews (see Table 1) with past participants to assess their knowledge of and ability to apply design thinking to a real world problem.
In the scenario with the interview, participants were tasked with describing the steps they would take to tackle the problem of declining market share of the iPhone. Without being specifically prompted, all interviewees included some form of waste reduction and environmental sustainability into their action plan in the scenario. Some causation for the inclusion of these environmental themes could be the students’ backgrounds, their association with the course’s focus on this particular wicked problem, and/or a general growing awareness of the global climate crisis. That said, their ability to connect a problem to a deeper, wicked problem demonstrates their use of the competencies of system thinking and problem setting from the hybrid design thinking model. They were able to place a practical task within a wider context and connect it with wicked problems involved, such as climate change and electronic waste.
Much like in the case of the Zeta team described above, any seemingly unrelated problem can be used as a gateway to begin discerning the mechanics needed to address a specific, wicked problem, which will lead to creating experimental solutions that can be further tested. Furthermore, the participants were able to identify, in name or description, the three core elements of the hybrid design thinking model—inspiration, ideation, and implementation—and delineate corresponding activities for each while also explicitly and implicitly describing design thinking’s approach to solving wicked problems. The participants’ perception of and demonstrated application of design thinking elements in their problem solving procedure in the interview sheds light on the effectiveness of design thinking as a problem setting and solving tool. This suggests that the participants embraced design thinking, specifically the three-pronged hybrid model that melds design methodologies and behavioral science, as a useful process for problem solving. More important than the interviewees identification of the steps of the model, was their application of problem setting and problem solving strategies that follow the three main elements of design thinking. Participants were able to show the use of brainstorming (inspiration), prototyping (ideation), and iteration (implementation) in various ways and interchangeably. This nimble and engrained use of the concept shows its effectiveness as a problem setting and problem solving tool as well as its impact on users.
This study was informed by a literature review which examined the history, theories, and application of design thinking in addressing wicked problems. In this study, design thinking is considered a “third discipline” or independent area of study that applies behavioral science and design methodologies to a proposed hybrid model. This hybrid design thinking model strengthens typical design methodologies by including (1) systems thinking, taking into account interconnectedness of ecological and social systems; (2) organizational learning, using double-loop learning, reflective practice, and iterative prototyping; and (3) elements of action research, such as collaborative and cyclical feedback with designer and client. This integrated process is particularly pertinent when working on problems beyond traditional design, for it lends a structural framework to behavioral science research using the three phases of ideation, prototyping, and implementation. In the hybrid design thinking model, behavioral and organizational considerations are not merely optional, but rather an essential element that works in congress with design methodologies.
As outlined above, the findings of this study are in line with the literature and research that indicate that design thinking is a potent tool for addressing wicked problems. By their nature, wicked problems are intractable and complex, so when testing ways to solve them effectively the method must be able to adapt with that nature. Specifically, this research suggests that design thinking represents an innovative process uniquely equipped to address wicked problems through its use of “problem setting.” That is, the effective use of needfinding—looking for solutions for relevant stakeholders—and double-loop learning—applying iterative knowledge and testing assumptions while doing. Although the participants in this study represent a very small treatment group in a specific educational setting focused on tackling environmental wicked problems, there is potential to test this experiment more broadly in educational settings focused on a variety of wicked problems.
There are four overarching implications that result from this study that academic researchers and practitioners should take into consideration when exploring how to use design thinking as an effective method to address wicked problems. First, future research should conduct experiments using design thinking to address wicked problems that occur within other thematic areas, such as gender inequality, wealth distribution, employment with new technologies, and religious tensions, among others. Second, future research should test a variety of team compositions and study settings beyond that of a university. For example, team members could be part of a research institution, corporation, government, or NGO, and studies could be conducted within those organizations or across disciplines. Third, future research should explore what other aspects of design thinking are effective and learn why they are or are not successful in tackling wicked problems. Fourth, future research should test the hybrid design thinking model’s effectiveness using other forms of design thinking as a control. Finally, beyond academia there are implications of this study for professional practice. Gleanings from this study and use of the hybrid model in the field can occur immediately if used as an adaptable and editable tool for problem solving. This can be used in NGO’s, governments, universities and companies working on wicked problems in their work.
This was a qualitative methods study that included a participatory design exercise focused on students enrolled in an entrepreneurship and circular economy course, where they were tasked to use design thinking as a method for creating innovative solutions to the wicked problem of environmental sustainability. While designed to examine how effective design thinking is for setting and solving wicked problems for teams, there is a clear limitation of its application on settings outside education, such as in business and practices outside of academia. Although the course was hands-on, involved the creation of a nonprofit or for-profit business, and was team-based, it still took place in an educational setting rather than in the open marketplace. In addition, this study unfolded in a European context and specifically within the Netherlands, which limits its scope further. As stated earlier, there are wider implications for this data beyond being held in an academic setting that influence the results and potential uses of design thinking. As stated above, future studies should be conducted with teams outside of academia who are tackling different wicked problems other than environmental sustainability. Different results could occur in different settings and problems and future research can explore those possibilities.
Beyond the components of the research, this study had limitations with time, as it had to be carried out during a specific semester and was dependent on student availability. In addition, due to university considerations, including the time needed for proposal review and IRB approvals, there were delays in conducting the interviews which were originally set for May 2018, but were carried out in December 2018 and January 2019. However, this allowed for a shift in focus of looking at how the knowledge and practice of design thinking remained implicitly and explicitly in the interviewees’ problem solving practices. A final limitation is that this study was a doctoral dissertation, which means it had a limited budget and a specific time period in which it was required to be completed.
Analysis of designers’ thinking and doing has been explored for over a half century, and design thinking, in particular, has evolved over the last three decades from a process only used by designers to more expansive use. Along with the expanded use of design thinking is the rightful criticism, skepticism, and curiosity with the approach, which can offer an opportunity for further refinement and transdisciplinary use. This evolution has expanded design thinking from traditionally creative fields to help create products to practical, ergonomic and aesthetic standards to being used by governments, social policy researchers, non-governmental organizations, and many more to solve societal problems and the most difficult among them, wicked problems. The hybrid design thinking model strengthens design methodologies with systems thinking, organizational learning, and action research, which can help deepen and inform the design methods when working on problems beyond traditional design. IDEO’s popularized design thinking process with the three elements of inspiration, ideation, and implementation provides a structure that can be used as a basis to add insights and tactics from social sciences—namely, systems thinking, organizational learning, and action research—and designer’s methods more broadly. Systems thinking offers an opportunity for teams to zoom out and have a macro view of the dynamic, interconnected elements of the wicked problem they seek to address through iterative solutions and reflection. Organizational learning offers a posture of learning which can strengthen the iteration, testing, and reflection processes in design thinking. Finally, action research informed practice with design thinking enables teams to be active participants, researchers, and designers in finding possible solutions to wicked problems. Design thinking when applied to solving problems in an entrepreneurial education setting will add to the effectiveness and innovative nature of the solutions created. Through creative brainstorming, experimentation and reflection being integrated into the creation of entrepreneurial solutions to wicked problems there is great potential ramifications beyond educational settings, such as industry, government, and civil society.
The data and materials used in the research are available through the ProQuest dissertation database as part of graduation requirements for the PhD at Fielding Graduate University.